APPLICATION NOTE

Equipment: IONUS Bromate,

contained a unit for Post-column Derivatization

Column PRP-X100, 5 μm, 100 mm x 4.6 mm ID,

P/N 79669, S/N 104 (Hamilton Company, USA)

Column temperature: 40 °C Eluent profile: isocratic

Eluent: 5.0 mM Sodium carbonate

2.5 mM Sodium hydrogen carbonate

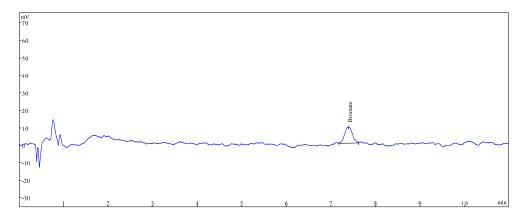
0.1 mM Sodium thiocyanate

Reagent: 500 ml Solution: 250 mg o-Dianisidine in 100 ml Methanol

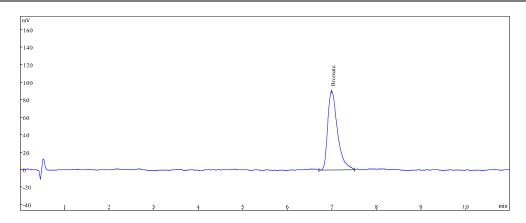
and 2.5 g Potassium bromide in Water with 70 ml 65 %

Nitric acid (procedure see next page)

Reactor temperature: 60 °C

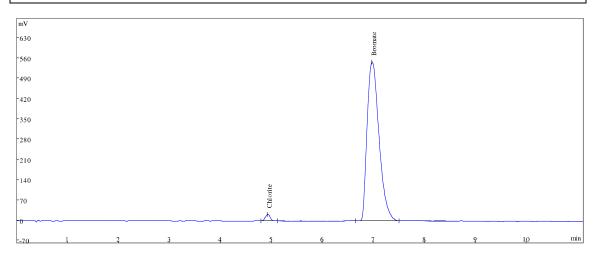

Flow.....: 1000 μ l/min Detection: visible 440 nm

Injection volume.....: 500 μl (manually) or 100 μl (autosampler)


Samples.....: Bromate standard solutions and

Standard for EPA method 317.0 Rev 2.0 (10 Anions)

Separation of Standard Solution 20 ppb (injection volume 500 µl)



Separation of Standard Solution 500 ppb (injection volume 100 µl)

Preparation of Post-column reagent (following EPA 317.0 Rev. 2)

The reagent is prepared by adding 70 mL of 65% nitric acid (purity as 99.999%) to approximately 300 mL ultrapure water in a well rinsed 500 mL volumetric flask and adding 2.5 grams of ACS reagent grade potassium bromide (KBr).

Two-hundred-and-fifty milligrams of purified grade o-dianisidine dihydrochloride salt (ODA) are dissolved, with stirring, in 100 mL methanol (Spectrophotometric grade).

After dissolution, the o-dianisidine solution is added to the nitric acid/KBr solution and diluted to volume with reagent water.

The reagent is stable for 24 hours and should be prepared fresh daily prior to analysis.