

Answers for Science. Knowledge for Life.™

Dr. Stephen Lock

RUO- MKT-10-3523

For Research Use Only. Not for use in diagnostic procedures

Agenda

- The use of CE in Biopharma
- What is CESI-MS?
- Applications using CESI-MS in BioPharma
 - 100% sequence coverage and PTM detection for monoclonal antibody studies.
 - The use of CESI-MS in intact protein analysis in relation to size and charge heterogeneity profiling.
 - How CESI-MS can be used in glycoprotein analysis in the characterisation of EPO & IFN
- Summary

Traditional CE System Schematic

Assessment of IgG Purity and Heterogeneity

1. CE-SDS = Purity analysis

"Capillary electrophoresis uses one or more capillaries as migration channels for electrophoresis and increasingly has become the procedure of choice when an electrophoretic separation method is needed. This is because CE is easier to perform, requires less time, and allows better precision and robustness than PAGE."

USP Guideline for Submitting Requests for Revision to USP-NF, v3.1

2. CIEF & CZE = charge heterogeneity analysis

3. Glycan analysis = microheterogeneity determination

Multi-site Studies in Industry Illustrate Portability of CE

- 2006: CE-SDS Gel: Chromatographia, 64, 359-368; A series of collaborations between various pharmaceutical companies and regulatory authorities concerning the analysis of biomolecules using CE
- 2011: CIEF: Chromatographia, 73, 1137-1144; Intercompany study to evaluate the robustness of C-IEF technology for the analysis of monoclonal antibodies:
- 2012: Imaged CIEF: J. Separation Science, 335, 3124-3129; Robustness of Imaged Capillary IEF methodology for the analysis of monoclonal antibodies: An Interlaboratory Study
- 2013: N-Glycan Mapping Study: CE Pharm 2013: Pending Publication
- 2015: Evaluation of capillary zone electrophoresis for charge heterogeneity testing of monoclonal antibodies. Journal of Chromatography B, 983–984 (2015) 101–110

Synopsis:

"CE Methods Can Be Reliable, Robust ,and Transportable Across Sites"

What is CESI – MS?

Combining CE & ESI-Mass Spectrometry

CESI 8000 High Performance Separation-ESI Module

CESI - "The Integration of Capillary Electrophoresis (CE) with Electrospray Ionization (ESI) Into a Single Dynamic Process Within the Same Device"

Implementation of CESI-MS Through a Commercial Interface

CESI - "The Integration of Capillary Electrophoresis (CE) with Electrospray Ionization (ESI) Into a Single Dynamic Process Within the Same Device"

CE with an Integrated Electrospray Ionization

"The Integration of Capillary Electrophoresis (CE) With Electrospray Ionization (ESI) Into a Single Dynamic Process Within The Same Device"

Conductive liquid reservoir IS voltage is applied

Eliminate interference from Oxidation/reduction products

Increase ionization and decrease ion suppression

Enable IS voltage connection to the liquid in inner lumen

Ultra-low flow

Influence of Flow Rate on Sensitivity

Evolution of the peak intensity of Angiotensin I (a) and detection sensitivity as a function of the flow rate (b) Experimental conditions: capillary electrophoresis; bare fused silica capillary with a porous tip, total length 88.5 cm \times 30 μ mi.d. \times 150 μ mo.d.; Infused sample, Angiotensin I at 2 ng/mL in 10% acetic acid. Mass spectrometry; capillary voltage,-1350 V; detection range, 50-3000*m*/*z*,

Reducing Ion Suppression Bias at Low Flow Rates

Monitoring maltotetraose suppression in the presence of neutrotensin

Analyte suppression decreases logarithmically below 50 nL/min

Multilevel characterization of mAbs by CESI-MS

Multilevel characterization of mAbs by CESI-MS – **Bottom up analysis**

Evaluation of CESI-MS for the comprehensive characterization of mAb forms

Immunoglobulin G (IgG)

U.S. National Library of Medicine

24.35 25.08

Time, min

mAb Characterisation Workflow

• Primary structure characterisation workflow based on bottom-up proteomics strategy

Slide courtesy of Dr Yannis Francois, University of Strasbourg

Biosimilarity Case Study: Cetuximab

 A single analysis of each sample sufficient to conclude on the complete similarity regarding AA sequence

 Complete sequence coverage is obtained through peptides without miscleavages or PTMs

• CESI-MS/MS enabled to confirm an error, recently reported in the litterature

Cetuximab QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYG VHWVRQSPGKGLEWLGVIWSGGNTDYNTPFT SRLSINKDNSKSQVFFKMNSLQSNDTAIYYCAR ALTYYDYEFAYWGQGTLVTVSAASTKGPSVFP LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTQTYICNVNHKPSNTKVDKRVEPKSCDKTH TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGK

DILLTQSPVILSVSPGERVSFSCRASQSIGTNIH WYQQRTNGSPRLLIKYASESISGIPSRFSGSGS GTDFTLSINSVESEDIADYYCQQNNNWPTTFGA GTKLELKRTVAAPSVFIFPPSDEQLKSGTASVV CLLNNFYPREAKVQWKVDNALQSGNSQESVT EQDSKDSTYSLSSTLTLSKADYEKHKVYACEV THQGLSSPVTKSKRGEC

QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYG VHWVRQSPGKGLEWLGVIWSGGNTDYNTPFT SRLSINKDNSKSQVFFKMNSLQSNDTAIYYCAR ALTYYDYEFAYWGQGTLVTVSAASTKGPSVFP LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTQTYICNVNHKPSNTKVDKRVEPKSCDKTH TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE

cetuximab-B

VFSCSVMHEALHNHYTQKSLSLSPGK

DILLTQSPVILSVSPGERVSFSCRASQSIGTNIH WYQQRTNGSPRLLIKYASESISGIPSRFSGSGS GTDFTLSINSVESEDIADYYCQQNNNWPTTFGA GTKLELKRTVAAPSVFIFPPSDEQLKSGTASVV CLLNNFYPREAKVQWKVDNALQSGNSQESVT EQDSKDSTYSLSSTLTLSKADYEKHKVYACEV THQGLSSPVTKSFNRGEC

UNIVERSITÉ DE STRASBOURG

D. Ayoub et al., mAbs 2013, 5, 699-710

Amino Acid Sequence Characterisation

Slide courtesy of Dr Yannis Francois, University of Strasbourg

Broad Range of Analysis for MAb Glycan ID

olycopeptides identified as R.EEQYN(Glycan)STYR.V	mAb glycan abbreviation	Glycan mass (Da)	Monoisotopic mass [M+H] ⁺ (Da)	Mass accuracy (ppm)	Average migration time (min) ¹	Average relative abundance (%) ¹² 54.49 ± 1.45	
	FA2G1 (G1F)	1606.5867	2796.0987	-0.41	34.92 ± 0.43		
Poptido -	FA2 (G0F)	1444.5339	2634.0459	0.25	34.72 ± 0.42	17.28 ± 0.97	
header -	FA2G2 (G2F)	1768.6395	2958.1515	-0.01	35.19 ± 0.43	8.59 ± 0.40	
regilite -	A2 (G0)	1298.476	2487.9880	0.67	35.00 ± 041	5.58 ± 0.31	
No. Bio	A2G1 (G1)	1460.5288	2650.0408	0.93	34.88 ± 0.43	4.07 ± 0.09	
Reptile -	FA1G1	1403.5073	2591.0037*	3.04	34.45 ± 0.41	1.52 ± 0.06	
Nation	FA2G2S1	2059.7349	3249.2469	0.78	34.45 ± 0.42	1.41 ± 0.11	
Featibe -	FA1	1241.4545	2430.9665	0.40	34.76 ± 0.44	1.25 ± 0.06	
teytite -	M5 (Man5)	1216.4228	2405.9349	0.09	38.18 ± 0.53	1.13 ± 0.66	
14010	FA2G1S1	1897.6821	3085.1785*	3.10	37.93 ± 0.52	1.02 ± 0.48	
feptite	A1G1	1257.4494	2446.9614	0.44	38.03 ± 0.48	0.78 ± 0.40	
Feytice	FA1G1S1	1694.6027	2884.1147	-3.15	34.39 ± 0.42	0.57 ± 0.03	
Payaka	A2G2 (G2)	1622.5816	2812.0936	-2.77	34.71 ± 0.39	0.55 ± 0.03	
Festile	A1	1095.3966	2284.9086	0.57	41.57 ± 0.64	0.51 ± 0.32	
	FA2G2S2	2350.8303	3540.3423	1.77	35.11 ± 0.44	0.44 ± 0.05	
Feature	A1G1S1	1548.5448	2738.0568	-2.81	37.90 ± 0.51	0.32 ± 0.15	
	FA2BG1	1809.6661	2999.1781	-3.00	35.09 ± 0.44	0.17 ± 0.01	
Pegtilde -	M4A1G1S1	1710.5976	2900.1096	-1.62	34.83 ± 0.43	0.14 ± 0.01	
Peyklik:	M5A1	1419.5022	2609.0142	-1.92	37.95 ± 0.52	0.14 ±.0.07	
Pagelda	A2G2S1	1913.677	3103.1890	-1.74	38.05 ± 0.57	0.06 ± 0.03	

¹Error was calculated as standard deviations from triplicate technical CESI-MS replicate runs.

²Relative abundances were calculated using peak areas of glycosylated peptides of the same sequence and charge state (+3). *[M+H]* mass has a -18.0106 Da loss due to water neutral loss.

Glycoform Characterisation: Fd Region

• Fd glycosylation site characterisation

Glycoforms exhibited by the candidate biosimilar are significantly different from cetuximab

> 30 % of glycans contains N-acetylneuraminic acid

Rejected as biosimilar

Gahoual R. et al., mAbs, 2014 (6), 1464-1473

PTM Hot Spot Characterization

N-terminal glutamic acid cyclization characterization

• CE mechanism separates of peptide with N-terminal glutamic acid cyclization from the unmodified peptide

Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

Separation of Aspartic Acid Isomers: Confirmation in Synthetic Peptides

• Aspartic acid isomers separation by CZE confirmed using a synthetic peptide

Slide courtesy of Dr Yannis Francois, University of Strasbourg

Multilevel characterization of mAbs by CESI-MS – middle down analysis

2.0e6

0.0e0

20

22

24

*Disulfide scrambling between mAb heavy and light chains can result in functional differences.

Reduced IgG4

30

26 ቖ 28

Time, min

Disulfide linkages identified on IgG4

SCIEX

Multilevel characterization of mAbs by CESI-MS – top down analysis

Charge heterogeneity analysis of IgG1 by CESI-MS

CESI-TripleTOF® 6600 MS

~ 10 mg/mL sample desalted into
50 mM ammonium acetate, pH 4

BGE – 3% acetic acid (tITP-CZE mode)

~3.5 nL injection → ~ 35 ng injected

*Reverse migration order

Charge heterogeneity analysis of IgG1 by CESI-MS

Single analysis at the intact level unifies multiple inferred analyses

Reduced IgG1 CESI-MS analysis

EPO Glycoform Heatmap by CESI-MS of Intact Protein

	SiA ₇	SiA ₈	SiA ₉	SiA ₁₀	SiA ₁₁	SiA ₁₂	SiA ₁₃	SiA14	SiA ₁₅		
Hex14HexNAc11Fuc3	25222										
Hex15HexNAc12Fuc3	25587										
Hex16HexNAc13Fuc3	25952	26243									
Hex1 HexNAc14Fuc3	26317	26608									
Hex18HexNAc15Fuc3	26682	26973	27264	27555						Relative in	tensity (%
Hex19HexNAc16Fuc3		27338	27629	27920	28211						0.016
Hex20HexNAc1+Fuc3		27703	27994	28285	28576	28867					0.031
Hex21HexNAc18Fuc3			28359	28650	28941	29232	29523				0.063
Hex22HexNAc19Fuc3			28724	29015	29306	29597	29888	30179			0.13
Hex23HexNAc20Fuc3			29089	29380	29671	29962	30253	30544			0.25
Hex24HexNAc21Fuc3			29454	29745	30036	30327	30618	30909	31200		0.50
Hex25 HexNAc22 Fuc3				30110	30401	30692	30983	31274	31565		1.0
Hex26HexNAc23Fuc3				30475	30766	31057	31348	31639	31930		2.0
Hex2;HexNAc24Fuc3				30840	31131	31422	31713	32004	32295		4.0
Hex28HexNAc28Fuc3					31496	31787	32078	32369	32660		8.0
Hex29HexNAc26Fuc3						32152	32443	32734			16
Hex30HexNAc27Fuc3							32808	33099			32
Hex31HexNAc28Fuc3							33173	33464			64
Hex32HexNAc28Fuc3								33829		1	100

74 distinct glycoforms detected

Sensitive Glycoform Profiling of β -Interferon-1 α (Avonex) and recombinant human Erythropoietin by CESI-TOF-MS – Haselberg et al.

The CESI 8000 Plus – a new range of detection capabilities ...

SCIEN

BECKMAN COULTER

4

LIF

UV/Vis

PDA

CE Assays & Method Development

MS Analysis

Summary

- CE is a robust and reliable technique well integrated into Biopharma development and control processes
- CESI-MS Effectively integrates capillary electrophoresis with electrospray ionization serving to reduce/eliminate ion suppression and increase ionization efficiency for:
 - Insulin Impurities
 - Peptide quantitation
 - Multi-level mAb characterization
 - o 1) Intact mAb/protein analysis
 - o 2) Reduced mAb analysis
 - 3) Peptide mapping and PTM characterization
 - Proteoform/glycoform characterization
- We are just starting to see where this technique will take analytical chemistry.
- Take Home Message "Flow Matters"

Acknowledgements

Amsterdam University (VU) **Govert Somsen Rob Haselberg**

Leiden University **Thomas Hankemeier** Rawi Ramautar

Leiden University Medical Center Andre Deelder **Oleg Mayboroda** Bart Schoenmaker Anton Heemskeerk Paul Hensbergen **Oleg Klychnikov Rico Derks**

Leiden University Medical Center

Innsbruck Medical University Herbert Lindner Klaus Faserl **Bettina Sarg** Leopold Kremser Astrid Devich Fatma Dikmen **Bernhard Halfinger**

Centre d'Immunologie Pierre Fabre Alain Beck Elsa Wagner-Rousset Marie-Claire Janin-Bussat R. Gahoual **Daniel Ayoub Olivier Colas**

Universoty of Strasbourg E. Leize-Wagner

Y.N. François

- J. Chicher
- L. Kuhn
- P. Hammann

Utrecht University Ad de Jong

Beckman Coulter

Jean-Marc Busnel

SCIEX

Bryan Fonslow Marcia Santos John Hudson

AB Sciex is doing business as SCIEX.

© 2016 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

Any Questions? stephen.lock@sciex.com

Answers for Science. Knowledge for Life.[™]

Answers for Science. Knowledge for Life.[™]

